Spectroscopic Characterization of a Green Copper Site in a Single-Domain Cupredoxin

نویسندگان

  • Magali Roger
  • Frédéric Biaso
  • Cindy J. Castelle
  • Marielle Bauzan
  • Florence Chaspoul
  • Elisabeth Lojou
  • Giuliano Sciara
  • Stefano Caffarri
  • Marie-Thérèse Giudici-Orticoni
  • Marianne Ilbert
چکیده

Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cupredoxin-like domains in haemocyanins.

Haemocyanins are multimeric oxygen transport proteins, which bind oxygen to type 3 copper sites. Arthropod haemocyanins contain 75-kDa subunits, whereas molluscan haemocyanins contain 350-400-kDa subunits comprising seven or eight different 50 kDa FUs (functional units) designated FU-a to FU-h, each with an active site. FU-h possesses a tail of 100 amino acids not present in the other FUs. In t...

متن کامل

A new structural paradigm in copper resistance in Streptococcus pneumoniae

Copper resistance has emerged as an important virulence determinant of microbial pathogens. In Streptococcus pneumoniae, copper resistance is mediated by the copper-responsive repressor CopY, CupA and the copper-effluxing P(1B)-type ATPase CopA. We show here that CupA is a previously uncharacterized cell membrane-anchored Cu(I) chaperone and that a Cu(I) binding-competent, membrane-localized Cu...

متن کامل

Synergistic Effects of Copper Sites on Apparent Stability of Multicopper Oxidase, Fet3p

Saccharomyces cerevisiae Fet3p is a multicopper oxidase that contains three cupredoxin-like domains and four copper ions located in three distinct metal sites (T1 in domain 3; T2 and the binuclear T3 at the interface between domains 1 and 3). To probe the role of the copper sites in Fet3p thermodynamic stability, we performed urea-induced unfolding experiments with holo-, apo- and three partial...

متن کامل

Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Coffee Powder Extract

The use of plant extract is generating interest of researchers toward cost effective and eco-friendly green synthesis of nanoparticles. In the present work, Cupric oxide nanoparticles were synthesized using coffee powder extracts by the sol-gel method at different calcination temperatures. The synthesized nanoparticles were characterized by X-ray diffraction, scanning electron microscopy , ultr...

متن کامل

The S2 Cu(i) site in CupA from Streptococcus pneumoniae is required for cellular copper resistance.

Pathogenic bacteria have evolved copper homeostasis and resistance systems for fighting copper toxicity imposed by the human immune system. Streptococcus pneumoniae is a respiratory pathogen that encodes an obligatorily membrane-anchored Cu(i) binding protein, CupA, and a P1B-type ATPase efflux transporter, CopA. The soluble, cytoplasmic domain of CupA (sCupA) contains a binuclear Cu(i) cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014